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LETTER TO THE EDITOR 

The Yang-Lee edge singularity by the phenomenological 
renormalisation group 

K Uzelac and R Jullien 
Laboratoire de Physique des Solides, Universitk Paris-Sud, Centre d'Orsay, 91405 Orsay, 
France 

Received 27 January 1981 

Abstract. The phenomenological renormalisation group is applied to the 1D transverse 
king model with longitudinal imaginary field in order to investigate the Yang-Lee edge 
singularity of the equivalent 2D Ising model. The value found for the exponent v is 
v = 0.42*0.005, in agreement with previous series expansion estimates. The method is 
also extended to calculate directly the exponent of the magnetisation. 

Recently much interest has been given to the phase transition in the presence of a purely 
imaginary symmetry-breaking field (see, for example, Kurtze 1980). This transition, 
which appears to be of second order for Ising and general n -vector models, belongs to a 
diflerent universality class than a zero-field transition. While the latter one corresponds 
to the cumulation of zeros of the partition function near the real axis in the complex field 
plane, the former, usually called the Yang-Lee edge singularity, corresponds to the 
cumulation of those zeros around some particular point on the imaginary axis when the 
temperature is above the critical temperature (Yang and Lee 1952). The transition is 
then described through the critical behaviour of the zero-density function which is 
proportional to the real part of the spontaneous magnetisation: 

g(h )  - Re M ( h )  - (h  - h,)". (1) 
h is the imaginary field and h,  is the temperature-dependent critical field below which 
g ( h )  is zero. As the critical behaviour is the same whether varying the temperature or 
the imaginary field (critical exponent A = l ) ,  p = 1/S = U and only one exponent is 
sufficient to characterise all the critical singularities. 

The interest of studying the Yang-Lee edge singularity is two-fold: first, it should 
influence the equation of state in the limit where the edge of the zero-density gap 
approaches the real axis; second, it opens a new universality class which could contain 
some other problems (with real parameters) as it was already shown for branching 
polymers in d + 2 dimensions (Parisi and Sourlas). 

Except in two trivial cases d = 1 and d = CO, where the exact solutions are available 
and give respectively U = -3 (Yang and Lee 1952) and (T = 3 (Baker and Moussa 1978) 
the problem of the Yang-Lee edge singularity has only been treated by approximate 
methods. The Field theoretical renormalisation group was applied in d = 6 - E dimen- 
sions (Fisher 1978) and series expansion results are available for d = 2  and d = 3  
(Kortman and Griffiths 1971, Kurtze and Fisher 1979). Recently we applied the real 
space renormalisation group to the analogous quantum problem in order to calculate 
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the Yang-Lee singularity in d = 2 (Uzelac et a1 1979,1980). Unlike the results for zero 
field, obtained by the same method, those for the imaginary field show several 
difficulties in converging to the series expansion results. We observe strong logarithmic 
oscillations in the real part of the magnetisation near criticality. The value of U 

calculated from the non-oscillating imaginary part of the magnetisation, converges 
towards U = -0.22*0.005 (Uzelac er a1 1981) which is definitely larger (in absolute 
values) than the series expansion result (+ = -0.163 *0.003 (Kurtze and Fisher 1979). 

In this Letter we report our more recent results using a different renormalisation 
group (RG) technique, the phenomenological renormalisation group (PRG), whose 
advantage is to give the critical exponents with very good precision. We calculate the 
critical exponent U and obtain a value very close to series expansion results. We have 
also been able to apply the PRG directly to the order parameter, and the resulting 
exponent (obtained in such a direct way) can be discussed in connection with previous 
discrepancies. 

The model considered here is the transverse Ising chain in a parallel imaginary field 
described by the Hamiltonian 

where J, r and h are real constants and S", S' are Pauli matrices. The r-dependent 
transition in the ground state of system (2) is equivalent (Suzuki 1976) to the tempera- 
ture-dependent transition in the two-dimensional classical Ising model in a parallel 
imaginary field. 

The phenomenological renormalisation group formulated by Nightingale (1976) is 
based on finite size scaling (Fisher and Barber 1972). It has already been applied to the 
special case of problem (2) when h / J  = 0 (Sneddon and Stinchcombe 1979, Hamer and 
Barber 1980). The procedure in this case is as follows. One considers the energy gap 
AE between the ground state and first excited state, which is generally related to the 
correlation length 6 by A E  - l/['. The finite size scaling postulates the same scaling 
equation for the finite system as for the infinite one. Thus the energy gaps for the blocks 
of n and m spins are related by 

where z and v are critical exponents of the infinite system. 
For problem (2) z is always equal to unity which evolves from the correspondence 

with the classical 2D problem. Then the critical behaviour can be calculated in a 
standard way. 

The critical field Tc is determined from the requirement 

AEn(0) = (m/n)AEm(O) (4) 

while linearising around r c / J  gives the value of the exponent U. 
In this quantum case, the same reasoning applied to the energy gap can easily be 

extended (Uzelac 1980) to the order parameter in order to calculate directly the 
corresponding exponents 77 and p. In the critical point the matrix element of the 
operator S" between the first two states 11) and 12) renormalises as 

(11s" 12), = (n/m)-d"(lls"12)m. ( 5 )  

This gives q = 2d, + d + z - 2 and p = d,u. 
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The advantage of the PRG is its rapid convergence. While the block methods 
converge as l / lg  n the present method converges by a power law, which has to be 
determined for each particular case (cf Derrida 1981). Our analysis of convergence for 
problem (2) with h / J  = 0 gives convergence in l / n 3  for r, and in l / n  for the exponent v. 
It is interesting to notice that the PRG applied to the equivalent classical problem also 
gives the convergence l / n 3  for T,, but l / n 2  for v (Nightingale 1976). The reason for 
this could lie in the strong ‘lattice’ anisotropy implicit in the quantum problem and also 
in our imposing t = 1 in equation (3). 

In the general case of problem (2), there are two independent parameters, and 
condition (4) is too weak. It is then reasonable to fix one of the two parameters and 
apply scaling of type (3) for the other one (differently than in the usual RG procedure). 
This will induce an additional approximation but the results should still converge to the 
exact value in the limit n + 00. 

Thus we write the equations analogous to the equations (3) and (4) as a function of 
h / J  fixing the transverse field parameter r/J. The exponent is given by 

- 

where h,/J is the critical field which depends on r. 
The calculations were performed numerically by taking periodic boundary condi- 

tions in the block. m = n - 1 has been taken in order to obtain the best convergence. 
Figure 1 contains the results for the exponent v as a function of the size n of the block 
for two different values of the transverse field r/J. The convergence is found to be in 
l / n x ,  where x is approximately 1.4. Although having slightly different slopes, the two 
series of points converge to the same value v = 0.42 * 0.005. The resulting value of U is 
U = ( d + t ) v -  1 = -0.164*0.01, which is very close to the result U = -0.163i0.003 
obtained by series expansion by Fisher and Kurtze (1980). 

In order to discuss the discrepancy of our previous result for U, which was directly 
derived from the imaginary part of the magnetisation we also performed the direct 
calculation of U in the present case. In the case of an imaginary field, equation ( 5 )  is 
replaced by two equations: the real part of the magnetisation is expressed by 

1 1  I t f 
l7,8)1671 (5,6) ( 4 5 )  l 3 , U  

1 
1 I 1 

0 0.05 0.1 0.15 
1 I d 4  

Figure 1. Values of the exponent Y as a function of block size for two different values of 
T J J :  T,/J=4 (0) and T , / J =  10 (x) .  
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while the imaginary part as the linear response is described by 

From the scaling argument it follows that dk = d t .  However, our results give two 
different values presented in figure 2. The corresponding real part value uR= 
-0.164 f 0.015 coincides with the series expansion result and is coherent with the value 
obtained from v, while the imaginary part is close to our previous RG result. The fact 
that the exponent gI for the imaginary part is different from that expected should be 
attributed to some effect which alters the procedure of PRG as well as other RG 

techniques. As pointed out already (Uzelac etal1979,1980,1981), this effect could be 
due to the influence of the singularity for a finite block, which affects the real and the 
imaginary part of the magnetisation differently. Then, the value for uI could be 
interpreted as intermediate between the 1D value U = -0.5 and that of 2D. 

-0.5 

- 0.7 

4 . 8 1  f t t  t I 
.c 17,81167) 15.61 (4.51 l 3 , 4  

0 0.05 0.1 0.15 
1 I I 

I 1 ~ 7 . 4  

Figure 2. Values for d t  and dk as a function of block size for two different values of 
T J J :  T J J  = 4 (0) and T,/J  = 10 (x). 

In conclusion the PRG was able to give values of the exponents v and U for the 
Yang-Lee edge singularity in 2D in very good agreement with series expansion 
estimates. However, there still remains the problem of the value of U when calculated 
from the imaginary part of the magnetisation which is found to be larger in absolute 
value. 

One of us (KU) would like to thank Dr B Derrida for his suggestion to use the PRG 
method. We thank also Dr P Pfeuty for fruitful discussions. 
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